

Practice in resting-state fMRI (rs-fMRI) Analysis: PART IV

盧家鋒 Chia-Feng Lu, PhD

Assistant Research Fellow/ Assistant Professor,

Translational Imaging Research Center, Taipei Medical University
Department of Radiology, School of Medicine, Taipei Medical University
Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University

2017/7/24 Chia-Feng Lu

HTTP://WWW.YM.EDU.TW/~CFLU

1

Course Arrangement

PART I

- REST toolbox http://restfmri.net/forum/index.php?q=rest
- ReHo, ALFF, fALFF, Statistics

PART II

- REST toolbox
- Functional connectivity (seed-based, atlas-based)
- FC strength mapping

017/7/24 Chia-Feng Lu HTTP://WWWYM.EDU.TW/~CFLU 2

Course Arrangement

- Large-scale network analysis
- Graph theory: topological properties (degree, strength, efficiency, clustering...)

PART IV

Dynamic functional connectivity

Dynamic functional connectivity (dFC)

2017/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU 3 2017/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU 4

Recommended Reading

- 1. Dynamic functional connectivity: Promise, issues, and interpretations.
- Hutchison et al. NeuroImage 2013.
- 2. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
- Hindriks et al. NeuroImage 2016.
- 3. Tracking Whole-Brain Connectivity Dynamics in the Resting State.
- Allen et al. Cerebral Cortex 2014.
- 4. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: Application to healthy controls and patients with schizophrenia.
- Yu et al. NeuroImage 2015.

2017/7/24 Chia-Feng Lu

HTTP://WWW.YM.EDU.TW/~CFLU

HTTP://WWW.YM.EDU.TW/~CFLU

-

Emerging evidence suggests...

The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales.

- Hutchison, 2013

Functional connectivity averaged over the session (STATIONARY)

V.S.

Changes of functional connectivity within the session (DYNAMIC)

Presence & Pattern

17/7/24 Chia-Feng Lu

HTTP://WWW.YM.EDU.TW/~CFLU

6

General Concepts – time series

Sliding window approach

- Window size
- Step size

Akgun et al. Computerized Medical Imaging and Graphics, 2015.

General Concepts – connectivity maps

Allen et al. Cerebral Cortex 2014.

2017/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU 8

General Concepts – pattern of dFC

Allen et al. Cerebral Cortex 2014.

2017/7/24 Chia-Feng Lu

HTTP://WWW.YM.EDU.TW/~CFLU

q

General Concepts – pattern of dFC

Hutchison et al. NeuroImage 2013; Allen et al. Cerebral Cortex 2014.

iia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU

10

General Concepts – presence of dFC

ZOI: zone of instability

Allen et al. Cerebral Cortex 2014.

General Concepts – dynamic graphs

Time-varying changes

- Magnitude
- Sign
- Be lost/gained

Hutchison et al. NeuroImage 2013.

017/7/24 Chia-Feng Lu HTTP://WWW.M.EDU.TW/~CFLU 11 2017/7/24 Chia-Feng Lu HTTP://WWW.M.EDU.TW/~CFLU 12

Key/Open Questions

- What is the neural origin, mechanism, and function of dFC?
- What are the contributions to FC fluctuations from motion, physiological noise, and scanner noise?
- What are the optimal setups to measure dFC using fMRI?
- What are the statistical pitfalls in the assessment of dFC?

→ Interpretation & clinical application?

2017/7/24 Chia-Feng Lu

HTTP://WWW.YM.EDU.TW/~CFLU

12

What is the neural origin, mechanism, and function of dFC?

Basis of dFC

- Reflecting anatomy and functions
- FC between <u>bilateral homologues</u> shows the least variability in connection over time, followed by the FC of nodes within <u>sensory and motor networks</u>.
- <u>Higher-level regions</u> showing greater FC variability tend to be involved in a greater range of functions and have a high degree of flexibility.

Gonzalez-Castillo et al., 2012.

- Correlating with autonomic states
- The brainstem, thalamus, putamen, and dIPFC, was found to become more strongly coupled with the dACC during states of elevated HRV.

Chang et al., 2013.

017/7/24 Chia-Feng Lu

HTTP://WWW.YM.EDU.TW/~CFLU

What is the neural origin, mechanism, and function of dFC?

Basis of dFC

- Concurrent EEG measurements
- Fluctuations in the power of different frequencies of the EEG jointly contribute to the BOLD signals of resting-state networks. Mantini et al., 2007.
- Relationship with behavioral response
- Modulation with conscious states

Hutchison et al. NeuroImage 2013.

What are the contributions to FC fluctuations from noise?

dFC or noise?

- Variations of dFC
- Low signal-to-noise ratio,
- Changing levels of non-neural noise (cardiac and respiratory processes and hardware instability)
- Variations in the BOLD signal mean and variance over time

17/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU 15 2017/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU 16

NBA MEA

Recommended parameters

- Typical fMRI acquisitions for stationary FC
- A single scan of approximately 5-10 min
- A repetition time (TR) in the range of 2-3 s
- Whole-brain coverage
- Correlation values within and between intrinsic connectivity networks stabilize within 4-5 min of data.

 Van Dijk et al., 2010.

017/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU

M.EDU.TW/~CFLU

What are the optimal setups to measure dFC using fMRI?

NBA NBA

Recommended parameters

 Empirically, window sizes around 30-60s have been noted to produce results in conventional acquisitions.

Hindriks et al. NeuroImage 2016.

 Multi-scale approaches (time-frequency analysis) may provide an alternative solution.

2017/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU 18

What are the statistical pitfalls in the assessment of dFC?

Statistical methods

• H0: stationary FC vs. H1: dynamic FC

Approaches: bootstrap and permutation tests

HTTP://WWW.YM.EDU.TW/~CFLU

Hindriks et al. NeuroImage 2016.

GUI for dFC analysis

19 2017/7/24 Chia-Feng Lu HTTP://WWW.YM.EDU.TW/~CFLU 20

Employed Software/Package

- 1. **SPM** preprocessing
 http://www.fil.ion.ucl.ac.uk/spm/
- 2. **REST** functional connectivity, ReHo, ALFF, fALFF, VMHC
- http://restfmri.net/forum/index.php
- 3. IBASPM 64-bit
- http://www.ym.edu.tw/~cflu/software/Ibaspm_64.zip
- 4. Brain Connectivity Toolbox/Network Based Statistic Toolbox

HTTP://WWW.YM.EDU.TW/~CFLU

- https://sites.google.com/site/bctnet/
- 5. Dynamic brain connectome analysis toolbox
- http://restfmri.net/forum/index.php
- 6. GraphVar
- http://www.rfmri.org/graphvar

Thanks for your attention:)

HTTP://WWW.YM.EDU.TW/~CFLU